BIO-PSYCHOLOGY

NEURONS AND THE BRAIN

NEURONS

PART I

NEURON

- A nerve cell
- » Sends information signals
- » Building block of the brain and nervous system
- » 100 billion neurons in the human brain and CNS! (and 400 trillion synapses!)
- » A grain of sand-size part of the human brain holds 100,000 neurons!

Dendrite (receives impulse)

- Branching extensions of a neuron
- Receive messages which it sends to the cell body
- Axon (transmits impulse)
 - Ends in branches
 - Remember: "Axons speak, dendrites listen..."

• Myelin Sheath (speeds impulse)

- A layer of fatty cells, which surround the fibers of neurons
- Speeds up the signal
- When it wears out we see
 - Alzheimer's (impedes transmissions affecting thought process)
 - Multiple sclerosis: interferes with muscle control (as message to muscles is impeded..)

STRUCTURE

NEURON

Dendrites (receive messages from other cells)

Axon

(passes messages away from the cell body to other neurons, muscles, or glands)

Cell body (the cell's lifesupport center)

> Neural impulse (electrical signal traveling down the axon)

(form junctions with other cells)

Terminal branches of axon

Myelin sheath (covers the axon of some neurons and helps speed neural impulses)

- Action Potential: how signals are sent
 - Neural impulse=a brief electrical charge that travels down an axon
 - Impulse starts when neuron receives signals from the senses
 - Action potential works like electricity: movement of positive and negative charges through the axon

Direction of neural impulse: toward axon

COMMUNICATION

ELECTROCHEMISTRY

- Neurons generate electricity from chemical events (like batteries)
- The chemistry to electricity process involves the exchange of ions
 - Ions=electrically charged atoms

- Synapse (Where the action is)
 - Gap between the axon branches of the sending neuron and the dendrite or cell body of the receiving neuron
 - Tiny gap between these structures is called the synaptic gap (less than a millionth of an inch!)
- Neurotransmitters
 - Chemical messengers that cross the synapse
 - Neurotransmitters bind to receptor sites ("lock and key") on the receiving neuron
 - They tell the next neuron whether or not to keep sending the message
- Reuptake
 - Excess neurotransmitters are reabsorbed by the sending neuron

NEURAL COMMUNICATION

NEURAL COMMUNICATION

PART II

NEUROTRANSMITTERS AND DRUGS

GABA

- Inhibitory (slowing) neurotransmitter
- Undersupply = seizures, tremors, insomnia

Glutamate

- Excitatory neurotransmitter
- Involved in memory
- Too much = migraines, seizures
- Chinese food has MSG (monosodium glutamate)
 = headaches

GABA AND GLUTAMATE

» ACh

- » Triggers muscle contraction
 - Movement
 - Learning
 - Memory
- » Undersupply = Alzheimer's

ACETYLCHOLINE

The pain signal is transmitted brain cell to brain cell. Endorphins combine with receptors to block the transmission of pain. » "Endorphins make you happy"
-Legally Blonde
» Natural, opiate-like neurotransmitters
• Body's built in morphine
» Linked to pain control and to

- » Linked to pain control and to pleasure
 - "Runners high"
- » Opium/heroine addicts
 - Brain stops producing natural opiates

NOREPINEPHRINE

- » Regulates Mood
- » Too much = mania
- » Too little = depression
- » Imbalance = bipolar disorder

SEROTONIN

- » Sleep, eating, mood
- » Related to depression
 - Prozac (anti-depressant drug) raises serotonin levels

DOPAMINE

» Perceptual awareness, muscle control » Connected to addiction » Too much = Schizophrenia (up to 6x) more dopamine) » A Beautiful Mind/The Soloist » Too little = Parkinson's Disease (tremors) » Muhammad Ali

- Drugs can affect neural communication at the synapse
- Agonists excite or mimic the neurotransmitters or block reuptake
 - Drug addicts and withdraw: brain gets used to having more of a certain neurotransmitter
- Antagonists block or slow neurotransmitters signal

DRUGS AFFECT NEUROTRANSMISSION

Serotonin pathways

Dopamine pathways

REMEMBER

» Communication within the neuron is......

• Electrical

» Communication between neurons is....

• Chemical

TABLE 2.1

SOME NEUROTRANSMITTERS AND THEIR FUNCTIONS

Neurotransmitter	Function	Examples of Malfunctions
Acetylcholine (ACh)	Enables muscle action, learning, and memory	Undersupply, as ACh-producing neurons deteriorate, marks Alzheimer's disease
Dopamine	Influences movement, learn- ing, attention, and emotion	Excess dopamine receptor activity linked to schizophrenia; starved of dopamine, the brain produces the tremors and decreased mobility of Parkinson's disease
Serotonin	Affects mood, hunger, sleep, and arousal	Undersupply linked to depression; Prozac and some other antidepressant drugs raise serotonin levels
Norepinephrine	Helps control alertness and arousal	Undersupply can depress mood
GABA (gamma- aminobutyric acid)	A major inhibitory neuro- transmitter	Undersupply linked to seizures, tremors, and insomnia
Glutamate	A major excitatory neuro- transmitter; involved in memory	Oversupply can overstimulate brain, pro- ducing migraines or seizures (which is why some people avoid MSG, monosodium glu- tamate_in food)

IMPORTANT NEUROTRANSMITTERS

THE BRAIN-STRUCTURE

PART III

PRE-TEST

Answer the following as true or false.

- 1. The larger the brain, the smarter the animal.
- 2. The brain's structure is a better indicator of intelligence than it's size.
- 3. The right side of the brain controls the right side of the body, and so on with the left.
- 4. You fall in love with your heart, not your brain.
- 5. Your brain uses 20% of your body's energy, but makes up only 2% of your body's weight.

PRE-TEST

- 6. Your brain is about the size of a cantaloupe and is wrinkled like a walnut.
- 7. Your brain feels like a ripe avocado and looks pink because of the blood running through it.
- 8. The baby's brain grows 3x in size during its first year.
- 9. At birth, the human brain weighs 4/5 of a pound, while an adult's weighs about 3 pounds.
- 10. Your brain generates about 25 watts of power while awake- or enough to illuminate a light bulb.

A TYPICAL HUMAN BRAIN

"Freeze! ... Okay, now ... Who's the brains of this outfit?"

- Contains about 100 billion neurons
- Consumes about ¼ of your body's oxygen
- Uses most of your bodies calories
- Is 70% water
- Weighs about 3 pounds

SECTIONS OF THE BRAIN

- There are many ways to organize the brain
 - Lobes of the brain
 - Four Lobes: occipital, temporal, parietal, occipital, frontal
 - Functions
 - Advanced'
 - Limbic System
 - Cerebral Cortex
 - Prefrontal Cortex
 - Basic
 - Brainstem
 - Thalamus

LOBES OF THE BRAIN

- Cerebral Cortex (processing part of your brain) is divided into four lobes
- 1. Frontal Lobe
- 2. Occipital Lobe
- 3. Parietal Lobe
- 4. Temporal Lobe

- Remaining sections of the cortex
- Function: pair new info with memories
- This is divided into your lobes

ASSOCIATION AREA

CEREBRAL CORTEX

- Enables perception, thought, and speech
- Cerebral cortex is to cerebral hemispheres as bark is to a tree
- Structure: wrinkled, 80% of brain weight, 20-23 billion nerve cells in the cortex!

LOBE FUNCTIONS

- <u>Parietal Lobe</u> Receiving and processing information from the senses mathematical and spatial reasoning, facial recognition
 - Home to the sensory cortex
- Frontal Lobe Decision-making, problem solving, and planning; judge, plan, process new memories, inhibition, personality
 - Home to the motor cortex
- Occipital Lobe Vision.
- <u>Temporal Lobe</u> Memory, emotion, hearing, and language.

 Arc shaped area in the back of the frontal lobe

- Runs from ear to ear
- Stimulating the left brain moves right side of the body and vice versa

SENSORY CORTEX

- Looks just like the motor cortex, but farther back
- Body areas that are more sensitive=larger brain area
- Two other spots for sensation
 - Occipital Lobe: back of brain, receive visual information
 - Auditory Cortex in the Temporal Lobe: thumb shaped and above the ear, receive auditory information.

BRAINSTEM

- Oldest section of the human brain
- Central core of the brain
- Begins where the spinal cord swells as it enters the skull
- Responsible for automatic survival functions

- Medulla: first piece of the brainstem
 - Location: base of the brain above the spinal cord
 - Controls heartbeat and breathing
- Pons
 - Above the medulla
 - Helps coordinate movement and facial expression
 - Connects midbrain to hindbrain
- Reticular Formation
 - Structure: Finger shaped network of neurons
 - Location: From the spinal cord to the thalamus
 - Filters info from the spinal cord, essential for arousal and sleep

THE BRAIN STEM

THE BRAIN STEM CONTINUED

- The Cerebellum
 - Location: Rear of the brainstem
 - Structure: Baseball sized
 - Functions: nonverbal learning and memory, judge time, regulate emotions, discriminate sound and texture, coordinates voluntary movement, and maintains balance

• Thalamus

- Location: Top of the brain stem
- Structure: Egg-shaped
- Function: gets info from the senses (minus smell), sends it to the cortex, gets replies and sends it to the medulla and cerebellum. **Sensory switch board**

Useful place: http://www.columbia.edu/cu/psychology/courses/1010/mangels/neuro/anatomy/structure.html

- Controls thoughts and reasoning
- Thalamus is technically part of the forebrain

THE FOREBRAIN (ADVANCED) BRAIN

- Structure: Donut shaped system of neural networks
- Components: hippocampus, amygdala, and hypothalamus
- Location: right above the brainstem
- Associated with emotions(fear and aggression) and drives(hunger and sex)

LIMBIC SYSTEM

- Part of the limbic system
- Structure: almond shaped neural clusters
- Influence aggression and fear
 - Processing memory and perception of these emotions

- Part of the limbic system
- Location: Below the thalamus; think hypo=below (as in hypothermia)
- Functions
 - Performs body maintenance: influence hunger, thirst, body temp, sexual behavior
 - Controls the pituitary
 - Closely linked to emotion
- Hypothalamus secretes hormones
- Reward center

HYPOTHALAMUS

- Part of the limbic system
- Predominant function is memory
- When suffering from Alzheimer's this is the first area to show damage

HIPPOCAMPUS

- Broca's Area: Psychically peaking
 - If damaged, can still sing and understand speech
- Wernicker's Area: Speech comprehension and expression
 - If damaged, can still make gibberish noise
- Angular Gyrus: Process visual and auditory input and coordinates the two
 - E.g.: Reading allowed requires visual info, turned into auditory info, then made into meaning, then spoken

LANGUAGE

THE DIVIDED BRAIN

PART IIIB

SPLIT BRAIN

- Corpus Callosum: network of nerves connecting brian hemispheres
 - Help communicate information from one hemisphere to the other
- Right Brain: facial recognition, emotion, simple requests, perception, intuitive responses, drawing, emotions
 - Figurative, subtle
- Left Brain: deliberate, logical reasoning, calculating, speech
 - Literal

SPLIT BRAIN RESEARCH

Separate the two hemispheres by cutting the corpus callosum

• Goal: control epileptic seizures

 Testing the "split brain" proves specific functions of each hemisphere THE SPLIT BRAIN EXPERIMENT DR. GAZZANIGA- 1967 STARE AT THE DOT....

he.art

 Which word would the split-brain patient verbalize seeing? Why?
Which word, when asked to point with his left hand, would he report seeing? Why?

"Look at the dot."

Two words separated by a dot are momentarily projected.

HEAR

"What word did you see?"

or

Art

SPLIT BRAIN EXPLAIN THE FOLLOWING...

THE SPLIT BRAIN

If this visual was shown to the right hemisphere of a split brain patient, how might the patient identify the object?

FUN FACTS

- Subjects can simultaneously draw different figures with the left and right hand.
- When the two hemispheres are at odds, the left will rationalize reactions it doesn't understand.
- The hemispheres are an "odd couple", each with "a mind of its own."

HANDEDNESS

- More people are right handed
- Left handedness is more common in males
- Lefties
 - Process speech in either side of brain (versus righties who process in the left)
 - More often have reading disabilities, allergies, and migraines
 - More common among musicians, mathematicians, pro baseball players, architects, and artists
 - Decline with age...
- Prenatal or genetic

STUDYING THE BRAIN

- Measures electrical activity across brain by applying • electrodes
- Can specify waves to specific stimulus \bullet
- Sleep research •

ELECTROENCEPHALOGRAM (EEG) DETECTS BRAIN WAVES

- Multiple x-ray pictures = 3D image of brain structure
- Structure only- not function
- Tumors, physical abnormalities

COMPUTED TOMOGRAPHY (CAT) SCAN

- Can measure amount and movement of chemical fuel, glucose, in the brain
- Clues on brain's activity: the more glucose used, the more activity
- Neurotransmitters and drugs

POSITRON EMISSION TOMOGRAPHY (PET) SCAN

- Like CAT, but used magnetic fields to measure density and location of brain material
- Soft tissue; allows us to see structures within the brain

MAGNETIC RESONANCE IMAGING (MRI)

MRI SCAN

- Reveals brains' functioning as well as its structure (MRI + PET)
- Compares multiple closely sequenced MRIs
- Watches brain "light up" by concentrations of blood flow to specific areas

FUNCTIONAL MRI (FMRI)

NERVOUS SYSTEM

PART II

THE NERVOUS SYSTEM

- Nervous System: the body's electrochemical information network
- Components of the Nervous System
 - Central Nervous System (CNS)-Internal command center made up of the brain and spinal cord
 - Peripheral Nervous System (PNS)-Connects CNS with sense receptors, muscles, and glands
- Nerves: large bundles of neurons
 - Sensory Neurons: Info from tissues and organs to the CNS for processing
 - Interneurons: Complex system of neurons that processes info in the CNS
 - Motor Neurons: Info from CNS back out to the body
 - Reflex: Single sensory neuron+single motor neuron+interneuron

- Two components: somatic and autonomic
 - Somatic: Allows us to move our skeletal muscles
 - Autonomic: Controls glands and muscles of our internal organs (e.g. heartbeat)
 - Operates on its own (but can be consciously overridden)
- Autonomic Nervous System also has two components
 - Sympathetic: Arouses (reaction to stress—fight or flight)
 - Parasympathetic: Calms (when stress subsides)
 - Sympathetic and parasympathetic systems work together to keep us at a steady state

PERIPHERAL NERVOUS SYSTEM

PERIPHERAL NERVOUS SYSTEM

SOMATIC OR AUTONOMIC?

- Sneezing
- Turning the page
- High-fiving your friend
- Kissing a date
- Coughing
- Digesting

http://www.youtu be.com/watch?fea ture=player_embe dded&v=ivk_irrH1 WY

NERVOUS SYSTEM BREAKDOWN

CENTRAL NERVOUS SYSTEM

- Brain and Spinal Cord
- Reflexes rely on the CNS
 - Action occurs without feeling: message stops at the spinal cord and never reaches the brain!
 - "Feeling" hits when the message reaches the brain
- Brain is the computer of the body
 - Collection of neural networks
 - Learning allows us to build neural networks (think foreign languages!)

REFLEXES

Pain Reflex: sensory neuron, interneuron, motor neuron=simple, inborn response

NEURAL NETWORK

Neurons in the brain connect with one another to form networks

The brain learns by modifying certain connections in response to feedback

- Learning builds connections
 - Feedback! Output affects the process
- Computer simulations using these networks also learn!

ENDOCRINE PART II B
THE ENDOCRINE SYSTEM

- Communication method #2
- Chemical communication
 - Hormones
 - Tissue→blood→Tissue
 - Hormones that affect the brain
- Speed: slooooow. Messages are slower and effects last longer

HORMONES • Chemical Messengers

- Move from tissue to tissue through the blood stream
- affect the brain influence interest in sex, Hormones Target cell food, and

Adrenal: DANGER! Gland

- Fight or flight response
- Acrivitated by the autonomic nervous system
- Location: top of kidney
- Hormones: epinephrine (adrenal)/norepinephrine (non adrenal)
- Effects: increased heart rate, blood pressure, blood sugar (energy!)
- Pituitary: Master Gland
 - Sex Gland
 - Location: core of the brain, pea size
 - Controlled by the hypothalamus (part of the brain)
 - Hormones: Various sex hormones
 - Effects: Puberty, reproduction

Useful place: http://www.hormone.org/hormones-and-health/what-is-the-endocrine-system/endocrine-glands-and-types-of-hormones

MAJOR GLANDS

kidney

Carlyn Iverson

kidney

